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Abstract. We show that the rapidly quenched high-temperature phase of the 3D Ising model,
with four-spin interaction, evolves into the glassy phase with higher energy than in the low-
temperature phase which can be reached upon slow cooling. The mechanism which traps the
dynamics in the glassy phase is a consequence of a shape dependence of the energy of excitations.
The semi-local invariance in this model is lifted by (sufficiently strong) thermal fluctuations to
the local gauge invariance.

1. Introduction

With the advent of very-high-speed-cooling techniques almost every fluid can be turned into
a glass provided cooling is fast enough [1]. Rapid progress on the experimental side of the
physics of glasses ignited their theoretical studies. However, the complex nature of glasses
makes their theoretical examination very difficult. It would be desirable to formulate a
lattice spin model of glasses since the physics of such models is relatively well understood
and many efficient methods have been developed in this area. Since a fluid under slow
cooling can be turned into an ordered crystalline phase, a possible candidate for the model
of glass should be non-random at the level of the Hamiltonian of the system. Randomness,
which is an intrinsic feature of glasses, should be the consequence of the dynamics of the
model under special conditions. This is in contrast to spin glasses where randomness is
included at the level of the Hamiltonian [2]. Recently, it has been shown that certain non-
random models indeed exhibit glassy behaviour [3]. However, these models are usually
infinite dimensional and it is not clear if a glassy phase exists in finite dimensional versions
of such models.

In this paper we show that the 3D Ising model with four-spin plaquette interaction has
a glassy phase. The idea that four-spin interaction yields the glassy phase has been recently
examined by Bouchaud and Mézard [4]. However, their model is rather complicated and it
is difficult to infer the microscopic mechanism responsible for the trapping of the dynamics
in the glassy phase. In contrast, in our model this mechanism can easily be deduced: it is the
shape dependence of the energy of excitations. As shown by Shoreet al [5], basically the
same mechanism is responsible for the glassy behaviour in the Ising model with bilinear,
competing interactions. Our results suggest that the shape dependence of the energy of
excitations might be a more common mechanism responsible for the appearance of a glassy
phase.

Models with multi-spin interactions have been frequently studied in the past, also in
the context of glassy properties. Certain indications of very slow dynamics in such models
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were noted several years ago by Mouritsenet al [6] who studied models with a slightly
different version of the four-spin interaction. In their version, interacting spins constitute
an elementary tetrahedron. Such a modification leads to important differences: Mouritsen
et al’s model has a two-fold degenerate ground state while our model with a plaquette
interaction has an infinitely degenerate ground state. This study was not motivated by the
glassy properties of the model and the authors did not examine this further. More recently,
glassy behaviour has been examined in the 1D three-spin model by Kiskeret al [7]. One
should also mention studies of the random (at the level of the Hamiltonian) versions of
multispin models by Rieger [8] and by Alvarezet al [9].

There is another reason for studying a 3D Ising model with four-spin interaction.
Recently, this model, as a particular case of the so-called gonihedric models, drew
considerable attention in connection with lattice string theories [10, 11]. Such a connection
exists because the energy of excitations in gonihedric models scales linearly with their
size (in the ordinary Ising model energy is proportional to the area of an excitation). The
thermodynamical properties of gonihedric models has already been examined by mean-field
approximations [12], the cluster variational method [13] and by Monte Carlo simulations
[12, 14]. For the model with a four-spin interaction, simulations indicate [14] that this
model undergoes a first-order phase transition. What is, in our opinion, not quite clear in
this model is the nature of the transition. What kind of symmetry is broken in the low-
temperature phase and restored in the high-temperature phase? In this paper we give some
arguments, supported by Monte Carlo simulations, that the high-temperature phase has a
very high symmetry, which is basically the same as in some gauge-invariant models. Thus,
we show that in the present model, whose Hamiltonian is invariant only with respect to
certain semi-local transformations, the local gauge symmetry is generated by (sufficiently
strong) thermal fluctuations. We also show that the square of the spin–spin correlation
function might be regarded as an order parameter which distinguishes between the high-
and low-temperature phases.

In section 2 we describe the model and examine its symmetries. We also propose a
form for the order parameter. In section 3 we study the glassy properties of our model.
Section 4 contains a summary of our results.

2. Symmetries of the model and the order parameter

First let us consider the 2D version of this model which is described by the Hamiltonian

H = −J
∑

SiSjSkSl (2.1)

where Si = ±1 and i runs over the sites of the square lattice. Summation in (2.1) is
performed over elementary plaquettes of the lattice. In the following we putJ = 1.
The general gonihedric model also contains nearest- and next-nearest-neighbour bilinear
interactions but here we examine only the particular case (2.1).

Since model (2.1) is actually a special case of the symmetric eight-vertex model, its
properties are known exactly [15]. Namely, the model is paramagnetic at any temperatureT .
Nevertheless, below, we present a qualitative analysis of this model because our arguments
should also apply to a 3D, unsolvable, version of model (2.1).

The following property of the model (2.1) will be of interest to us: Hamiltonian (2.1)
is invariant with respect to a semi-local group of transformations which flip the entire row
(or column) of spins. Immediate proof follows from the structure of the Hamiltonian (2.1).
This group of transformations will be referred to in the following asG.
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Now, let us calculate the correlation function〈SiSj 〉:
〈SiSj 〉 =

∑
{Sk}

SiSje
−βH /Z Z =

∑
{Sk}

e−βH (2.2)

where i 6= j andβ = 1
kBT

. To calculate (2.2) note that there must be a row or a column
which contains the sitei but does not contain the sitej . With each configuration{Sk} in
which Si = 1 let us associate a configuration{Sk}′ which is obtained from{Sk} by flipping
all spins along this row or column. Since the contributions to〈SiSj 〉 coming from {Sk}
cancel with those from{Sk}′ (both configurations have the same energy) we obtain that
〈SiSj 〉 = 0.

Since all spin–spin correlation functions vanish we find that the system is a perfect
paramagnet with the susceptibility following Curie’s lawχ = 1

kBT
and no spontaneous

magnetization defined as

m2 = lim
|i−j |→∞

〈SiSj 〉. (2.3)

Note that the vanishing of〈SiSj 〉 is a consequence of the fact that the operatorSiSj is not
invariant with respect toG. It is easy to see that, for example, the product of four operators
around an elementary plaquette is invariant and such correlation function does not vanish
(at least not due to this symmetry).

The above analysis resembles Elitzur’s theorem [16] in lattice gauge theory [17]. This
theorem states that quantites which are non-invariant with respect to local gauge symmetry
vanish. However, the proof of this theorem is restricted to the local gauge symmetries.
This locality ensures that when the thermodynamic limit is taken in the proper way (first
the system sizeL→∞ and then the external fieldh→ 0) then the non-invariant quantity
vanishes. The non-local character ofG means that the above ‘derivation’ of the vanishing
of 〈SiSj 〉 is not strictly correct and requires important reconsideration.

This problem is related with the ergodicity [18] of the model (2.1). Let us illustrate this
problem with a simple example. Thed = 2 Ising model with bilinear interaction has global
up–down invariance. The operatorSiSj is invariant with respect to this transformation
while Si is non-invariant. The simple argument, as presented above, thus suggests that
〈SiSj 〉 6= 0 and 〈Si〉 = 0. However, we know that only the former statement is correct
since at low temperature the model breaks ergodicity and has spontaneous magnetization.
But this simple argument is correct at high temperature where ergodicity is restored and, as
required by symmetry, the system has no magnetization.

Thus, if the model is ergodic then our results concerning the correlation functions in
model (2.1) are correct. Although we cannot provide rigorous analysis of the ergodicity
properties of model (2.1) we can present some reasonable, in our opinion, arguments that
model (2.1) are indeed ergodic.

Let us consider one of the ground states of (2.1) withSi = 1 at every site. Let us also
assume that all spins are kept rigid except spins along a certain row. However, the evolution
of spins in this row closely resembles the dynamics of thed = 1 Ising model with bilinear
coupling. Let us flip a single spin on this row thus creating an excitation which consists of
four ‘broken’ squares. Flipping one of the nearest neighbours of the already flipped spin does
not increase the energy but merely shifts the ‘broken’ squares and exactly the same dynamics
governs the 1D Ising model, which is known to be disordered at any temperature. Since
freeing the remaining spins can only speed up the escape from this ferromagnetic ground
state we thus conclude that the model is ergodic at any positive temperature (evolution
starting at any other ground state will proceed with the same energetics).
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This can also be described in the following way. Model (2.1) has a 22L-degenerate
ground state, whereL is the linear size of the lattice. However, these ground states are not
well separated: each ground state is connected with other 2L ground states by the interface
of dimensionD = 0 (2L is the total number of columns and rows). A standard argument
[18] shows that such interfaces are low-energy barriers and cannot trap the system and at
any positive temperature the system will visit the entire phase space.

Now consider the 3D version of model (2.1) on the simple cubic lattice. It is easy to
see that in this case the Hamiltonian (2.1) is invariant, but only with respect to the flipping
of whole planes of spins. Using the same arguments as in the 2D case, we find that if the
model is ergodic then all spin–spin correlation functions vanish. But the situation is now
very different. Namely, to go from one ground state to the other, the system has to flip
an entire plane of spins and thus it has to overcome much higher energy barriers. Free
energies of such barriers will most likely increase linearly with the system sizeL (since the
interface is one dimensional) and should be capable of breaking the ergodicity and trapping
the system at sufficiently low temperature. Thus, we expect that〈SiSj 〉 = 0 but only at
sufficiently high temperature (it is natural to expect that the temperature which separates
these two regimes is the same as the temperature of the discontinuous transition). Note
that the vanishing of〈SiSj 〉 due to Elitzur’s theorem is a characteristic feature of gauge
invariant systems [17]. Thus, as far as correlation functions are concerned, model (2.1) at
high temperature is equivalent to gauge-invariant models. Moreover, our arguments apply to
the general gonihedric model (whose model (2.1) is only a particular case) as well because
in this model the semi-local invariance considered above also holds. This is particularly
interesting for some other values of parameters where the gonihedric models are known to
have a second-order transition. In such a case the model is expected to have a well defined
continuum limit which corresponds to the string theory.

To confirm this scenario we performed the standard, importance sampling Monte Carlo
simulations [19]. Such studies of this model have already been performed by Espriuet
al [14]. Measuring Binder’s energy cumulant they found that the model has a first order
phase transition atTc ∼ 3.96 (in our units). For lattices of sizeL = 8, 12, . . . ,24 we
measured susceptibilityχ defined as the sum of all spin–spin correlation functions. We do
not present detailed data but our results clearly confirm that aboveTc we haveχ = T −1.
The behaviour ofχ for T < Tc requires more careful analysis. Provided we start the
simulations from the ferromagnetic ground state, we observe, as expected, thatχ ∼ L3.
However, magnetized ground states constitute only a small portion of all ground states [11].
It is thus more appropriate to choose the low-temperature phase in a more representative way.
One possibility is to choose it randomly by cooling the system from the high-temperature
phase. Doing so we found thatχ again follows Curie’s law but this time with much larger
fluctuations. We expect that due to some self-averaging the susceptibility follows Curie’s
law even though spin–spin correlation functions are non-zero. Our explanation of this fact
is that, since cooling selects the ground state randomly, correlation functions in this ground
state are most likely to acquire random values which cancel out and eventually we obtain
Curie’s law. If so, then two-spin correlation functions〈SiSj 〉 might be used to construct
an order parameterr which would distinguish between high- and low-temperature phases.
However, because〈SiSj 〉 assumes random values in the low-temperature phase, we have to
take its square:

r(δ) =
∑
i

〈SiSi+δ〉2. (2.4)

For an arbitrary finite lattice vectorδ the order parameter should be zero in the high-
temperature phase and non-zero in the low-temperature phase.
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Figure 1. The order parameterr as a function of temperature.
Open and full circles correspond to heating and cooling,
respectively. The results are obtained forL = 24 and for
each temperature we made runs of 20 000 Monte Carlo steps.

To confirm this scenario using Monte Carlo simulations we calculatedr(δ). Our results,
for δ equal to the lattice unit vector, are shown in figure 1, clearly confirm the vanishing of
r in the high-temperature phase (at the same time it confirms the restoration of ergodicity
in this phase). We also measuredr for some other values ofδ and similar behaviour
was observed. Thus, the transition atTc might be regarded as the freezing of correlation
functions. Let us also note a similarity with the ordinary Ising model where the one-spin
correlation function (magnetization) is an order parameter and the two-spin interaction enters
the Hamiltonian.

3. Glassy behaviour

There is yet another reason for studying model (2.1). Namely, when suddenly cooled the
high-temperature phase does not evolve into the low-temperature phase but to a phase with
considerably higher energy. This phase is referred to in the following as a glassy phase.
The temperature dependence of the internal energy is shown in figure 2. We simulated
a lattice of sizeL = 24 and at each temperature we made runs of∼ 104 Monte Carlo
steps. Strong hysteresis confirms that a model undergoes a discontinuous transition (Espriu
et al’s estimation ofTc(∼ 3.96) is at the high-temperature end of our hysteresis). From
this figure one can see that the glassy phase extends up toT ∼ 3.4 which is approximately
the same as the low-temperature end of the hysteresis. Thus, in the temperature range
TG ∼ 3.4 < T < Tc our model is in a supercooled liquid phase. The time evolution of
energy under such a quench is shown in figure 3. Stability of the glassy phase is most
pronounced forL = 16 andT = 3.0, where during almost the whole run the energy
of the system remains nearly constant. From visual inspection of figure 3 one can see
that the evolution into the glassy phase (aging) becomes slower for larger system size and
lower temperature but of course more extensive analysis of these effects would be desirable.
Moreover, our results suggest only slight size dependence of the energy of the glassy phase.
We made runs of 2× 105 Monte Carlo steps also forL = 32 andT = 3.0 and the limiting
energyU = −2.91 is, within (small) error, the same as the energy forL = 24 (for L = 16
this energy isU = −2.92).

What is the mechanism which traps the dynamics in the glassy phase? This problem is a
consequence of the shape dependence of the energy of excitations in the present model. Let
us consider again model (2.1) in the 2D case. For simplicity, let us choose the ferromagnetic
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Figure 2. Internal energyU as a function of temperatureT (kB = 1). Full and broken curves
correspond to heating and cooling, respectively. The dotted curve shows the energy of the
glassy phase obtained from cooling a random configuration (T = ∞). Heating starts from the
ferromagnetic configuration (Si = 1 at everyi) but for quantities like internal energy the choice
of the ground state is not important.

Figure 3. The time evolution of energy under cooling to temperature (a) T = 2.5; the dotted
and full curves correspond toL = 24 andL = 16, respectively. (b) T = 3.0; the chain and
broken curves correspond toL = 24 andL = 16, respectively. The initial configuration is
random (T = ∞). Averaging was made every 1000 Monte Carlo steps.

ground state; for any other ground state the same considerations can be made. An elementary
excitation, obtained by flipping a single spin, increases the energy by 8 J. But it is easy to
note that every excitation which is rectangular increases in energy by the same amount (see
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Figure 4. (a) A rectangular excitation. (b) A higher energy excitation.

figure 4(a)). One can immediately realize that it is not the total perimeter of an excitation
which determines its energy, as in an ordinary (two-spin) Ising model, but merely the number
of its corners. Such energetics of excitations is very peculiar. It gives rise to a large class of
low-energy, effectively tensionless, excitations (‘Goldstone mode’). The existence of these
low-energy excitations provides yet another way to understand why model (2.1) for 2D is
disordered for anyT .

Let us assume that we prepared our system at high temperature and then we cooled it
suddenly. At high temperature, excitations of arbitrary shape and size are present. After
reducing the temperature, the system reduces its energy by eliminating excitations. The key
point of our argument is that to eliminate excitations such as those shown in figure 4(a) one
has to create an excitation of the shape shown in figure 4(b); but such excitation has more
corners and thus its energy is larger. Consequently, to remove such excitations, the system
has to climb certain energy barriers. It is natural to expect that removing such excitations
is very slow especially at low temperature. Note that in the ordinary Ising model both
excitations shown in figure 4 would have the same energy. In this case we would not have
to climb any barrier and the process of elimination of excitations would be much faster.

Is this mechanism capable of trapping the 2D model? Our Monte Carlo results show that
the answer is negative. Although slowly, especially at low temperature, the model evolves
to the equilibrium (disordered) phase. Since in 2D the model has only the disordered phase
thus the lack of the glassy phase is an expected feature. Later, we will mention some
dimensional arguments on the non-existence of the glassy phase in 2D as suggested by
Shoreet al [5].

Now let us consider the 3D case. In this case the energetics of excitations changes. It
is easy to show that, for example a cubic excitation of sizeM increases energy by 24M J:
energy is determined by the total length of edges of the cube; in our case 12M. Although
not tensionless, such size dependence is again different than in the ordinary Ising model
where the energy of an excitation of sizeM is proportional toM2 and not toM. However,
in the 3D case a similar trapping mechanism operates. Namely, to remove a cubic excitation
of sizeM, initially we have to increase the total length of its edges and thus climb some
energy barrier. In 3D this mechanism requires more careful consideration. In 2D, to reduce
the excitation by one row, we had to climb some finite energy barrier, then further evolution
did not require any additional increase of energy (essentially it would be a random walk).
Note that in 3D this is not the case. Let us remove an elementary cube from a corner (the
most vulnerable place) of our cubic excitation of sizeM. A step which is created in such
a way is not free (as ford = 2) and to move it we have to further increase the energy
(to change the position of this step we have to remove other elementary cube(s) but this
increases the total length of edges and thus the energy). In order to diminish our cubic
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excitation by one layer we have to climb an energy barrierδE ∼ M, but the average time
needed to climb such barriers grows exponentially withM, i.e. τ ∼ λM , λ > 1 [18]. This
means that excitations of large size, which should appear in the process of evolution after
sudden cooling, are actually trapped.

We have performed a Monte Carlo simulation to estimate the average timeτ(M) needed
to remove an excitation of sizeM. The initial ferromagnetic configuration (Si = 1)
contained a cubic excitation (Si = −1) of the sizeM = 3, 4, 5, 6, 7. The size of the lattice
wasL = 2M but for smallM(= 3, 4) we had to use largerL. We measured the time needed
to bring the system to the ground state. The temperature was set atT = 2.75 (T < TG),
which is sufficiently low to ensure that the process of elimination of the initial excitation sets
the only slow timescale (once this excitation is removed the system very quickly reaches
the ground state). Our results are averages over 1000 measurements, exceptM = 7 where
only 100 measurements were made. We obtained:τ(3) = 144, τ(4) = 915, τ(5) = 5433,
τ(6) = 30 843,τ(7) = 155 400. In our opinion, these results, which increase roughly by
the same factor, strongly support the predicted exponential divergence ofτ . Fitting τ ∼ Mφ

gives systematically increasing and unrealistically large values ofφ(∼ 10). Recall that in
the ordinaryd = 3 Ising model one expectsφ = 2 [20].

Is the existence of the glassy phase restricted to the pure four-spin interaction or does it
also appear in the Ising model where both bilinear and four-spin interactions are present? In
our opinion the glassy phase should exist in such models as well. The reason is that although
the energy of excitations depends on the area (due to the bilinear terms) it still depends
on the shape (four-spin terms) and basically the same arguments should apply. However,
there might be some important differences as well. Namely, in the model with both kinds
of interaction it is possible that the thermodynamic transition is a continuous one. In such a
case close to the critical point large fluctuations should be more effective in destroying the
trapped domain pattern. The situation should be very similar to that which appears in the
ferromagnetic Ising model with small antiferromagnetic next-nearest-neighbour interactions
[5]. For that model Shoreet al found that there is a certain temperatureTcr (corner-rounding
temperature) below a thermodynamic critical point and such that the trapping mechanism
is effective but only belowTcr. For largerT thermal fluctuations roughen the domains and
the usual (withφ = 2) coarsening mechanism is restored. However, it has been argued
[5] that because atTcr the energy barriers go to zero and the transition atTcr is not a true
glassy transition. Shoreet al also explain why in 2D models there in no glassy phase. This
is because in 2D, thermal fluctuations roughen the corners of domains at arbitrary positive
temperature and quickly coarsening (withφ = 2) brings the system to the low-temperature
phase.

Is our TG a kind of corner-rounding critical temperature? Much more extensive Monte
Carlo simulations would be needed to answer this question definitively but one can argue
that it need not neccessarily be so. Namely, the important difference is that in our model
(2.1) the phase transition is discontinuous while in the model examined by Shoreet al it is
continuous. It has already been argued that at least in some models [21] the roughness of
an interface is related to the character of the phase transition and, in particular, it is usually
rough at continuous transitions and flat at discontinuous transitions. Since the transition in
model (2.1) atTc is discontinuous, one might expect the interface to be flat atTG which might
imply the non-vanishing of energy barriers atTG. However, the roughness of the corner
constitutes another kind of interfacial phenomenon and applicability of these arguments is
at present unclear.

Another interesting question is whether one can construct an order parameter which can
distinguish between glassy, crystal and liquid phases of the model. A possible candidate
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might be the order parameterr(δ) or rather itsδ-dependence. Our preliminary results (not
presented here) indicate that in the glassy phase the parameterr(δ) becomes substantially
smaller for increasingδ. However, further calculations would be needed to check whether
indeed, theδ-dependence ofr(δ) might distinguish the glassy phase from the crystal phase.

4. Summary

We have found that a relatively simple 3D Ising model has a glassy phase. The stability
of this phase is a consequence of the shape-dependence of the energy of excitations in
this model. The fact that the glassy behaviour appears in both the model with four-spin
interaction and the Shoreet al model with competing interaction might qualitatively explain
the apparent abundance of glasses in real systems because in such systems these interactions
are likely to exist. Another interesting feature of this model, which was recently examined in
the context of the string theory, is that thermal fluctuations induce the local gauge invariance,
even though there is no such symmetry in the low-temperature phase. Although the physics
of glasses and the physics of strings have little in common, we should not reject beforehand
the possibility of some deeper relationships.
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